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Abstract—Network Function Virtualization (NFV) provides a
new paradigm for provisioning network service where network
functions are deployed as Virtual Network Functions (VNFs). Due
to the advantages of NFV, many Network Function Virtualization
Providers (NFVPs) offer their NFV services by deploying VNFs
with purchased cloud resources in cloud environment to save
the provisioning expense. However, existing VNF provision-
ing solutions ignore the influences of the dynamics of cloud
environment, which may lead to over-provisioning and high
deployment expense. In this paper, we study the problem of
how should the NFVPs purchase cloud resources to provide
NFV services for customers in order to minimize the expense
of NFVPs, considering the dynamics of the system. We first
abstract the system model of this problem and formulate it as a
stochastic optimization programming problem. Then, we present
our VIrtual Network functiOn proviSioning (VINOS) approach
that can efficiently solve the stochastic optimization programming
with a rolling horizon procedure. In particular, it first leverages
Long Short Term Memory (LSTM) networks to predict future
exogenous information and then optimally solves a deterministic
problem over short horizon. We conduct extensive numerical
experiments to evaluate the proposed approach. The experiment
results suggest that our approach achieves total cost of 1.2 times
offline optimum, and outperforms the benchmark algorithm by
8%, averagely.

Index Terms—Network Function Virtualization, Virtualized
Network Function Provisioning, stochastic optimization, long
short term memory networks

I. INTRODUCTION

NFV aims to build more dynamic and service-aware net-
works while reducing Capital Expense (CAPEX) & Operating
Expense (OPEX) and improving service agility. It leverages
standard virtualization technologies to decouple physical net-
work devices from the functions that run on them. In this
way, Telecommunication Service Providers (TSPs) can design,
deploy, and manage network services in a new paradigm
where services can be decomposed into sequences of VNFs,
which are called Service Function Chainings (SFCs), and
these VNFs can then be instantiated in software running
on standard physical servers at different network locations
without purchasing new hardware [1-3].

Urging to obtain the benefits of NFV, many initiatives start
to investigate the possibility of deploying VNFs in the cloud
[4, 5]. Within this marketplace, NFVPs can purchase public
cloud resources to instantiate VNFs and construct SFCs, in
order to serve the service requests of customers on demand.
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Fig. 1. Spot price of an instance of class c3.8xlayge VM [7].

In this paper, we investigate the problem of how NFVPs
should purchase cloud resource for VNF provisioning for
the sake of minimizing their expense. Nevertheless, there
are several dynamics that make VNF provisioning very chal-
lenging. (i) The flow rates of service requests may change
over time. This flow fluctuation is becoming more and more
significant with the emergence of new network services. For
example, in Internet of Things (IoT) applications, the flow
is always time-varying with the asynchronous activation and
silence, node failures and mobility of sensors and actuators
[6]. (ii) The prices of cloud resources may vary over time, too.
For example, Fig. 1 presents the spot price of c3.8xlarge
type Virtual Machine (VM) instance at west of United States
(US) of Amazon EC2, from which we can see that the price
changes dramatically over time [7]. The fluctuations of service
rates and cloud prices introduce uncertainties into decision-
making process when NFVPs purchasing cloud resource for
provisioning VNFs. These fluctuations make the decision-
making process of NFVPs more difficult since decisions made
current without knowing future information may turns out
to be sub-optimal in the long run. However, by elaborately
panning the decision-making process, we could also encounter
expense as little as possible. Therefore, there is an urging
demand for effective methods to deal with this dynamics in
VNF provisioning system.

However, most existing proposals tend to deal with static
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problems. These proposals are unable to deal with the dy-
namic problems, since these methods assume that the overall
information is known when making decisions [8, 9]. There
are some works try to deal with the online version of the
problem where the service requests arrive to the system
gradually. Nevertheless, there methods ignore the uncertainties
introduced by the NFV system itself [10, 11]. For example,
the price and flow rate fluctuations we consider in this paper.
We will discuss more details about the drawbacks of previous
works in Section II.

In this paper, we study the problem of optimizing the
strategy for NFVPs to purchase cloud resource, such that
their expense are minimized. We investigate the system model
of VNF provisioning and formulate it as a stochastic opti-
mization problem. However, we cannot solve this stochastic
programming easily due to the explosion of the problem
size over an infinite or even a long horizon. In order to
overcome this challenge, we adopt rolling horizon procedure
which is a widely used and efficient method in operational
research community. This method first build a deterministic
programming from origin stochastic programming leveraging
predicted future exogenous information and then solve this
deterministic problem in a short horizon. In particular, We
obtain the predicted information using LSTM network which
is well-known for predicting time series data, and solve the
deterministic problem using CPLEX. Finally, comprehensive
numerical simulations are conducted to evaluate the proposed
approach. The experiment results show that the proposed
algorithm achieves near-optimal performance compared to
offline optimal and has superior performance over benchmark
method.

The rest of this paper is organized as follows. In Section II,
we discuss more details about existing works. We present the
system model and formulate the problem in Section III. In
Section IV, we present the solution adopting rolling horizon
procedure. We evaluate the performances of proposed method
in Section V. We conclude the paper in Section VI

II. RELATED WORKS

Due to so many advantages of NFV, there are a vast
amounts of proposals that study the problem of VNF pro-
visioning.

Some literature investigates optimal VNF chain placement
over objectives like throughput maximization, cost minimiza-
tion, etc. Sallam and Ji [8] study the problem of maximizing
total processed traffic under budget constraint and capacity
constraint. By relaxing the requirement of fully processed
flows and granting partially processed flows, the authors
propose two performance guaranteed algorithms for the orig-
inal problem. Huang et al. [9] consider how to maximize
throughput of delay-sensitive service requests by leveraging
horizontal scaling and vertical scaling, and they devise an
efficient algorithm by reducing the problem to minimum-
weight feedback arc set problem and the generalized assign-
ment problem. Hawilo et al. [12] examine the problem of VNF
placement in small and large scale Data Center (DC) networks,

and the authors provide a novel Mixed Integer Linear Pro-
gramming (MILP) optimization model and a novel heuristic
solution. Similarly, Gu et al. [13] investigate the problem
of VNF deployment and flow scheduling in geo-distributed
DCs, considering minimizing deployment and communication
costs. They formulate the problem into MILP and propose
a relaxation-based algorithm. However, The above literature
considers the static VNF placement problem, which neglects
the dynamic characteristics of NFV system.

Many proposals study the online version of the VNF provi-
sioning problem where service requests arrive to NFV system
gradually. Chen et al. [10] propose a fully decentralized ap-
proach for online VNF placement problem by using Lyapunov
optimization techniques. Gu et al. [14] investigate a fairness-
aware flow scheduling problem for network utility maxi-
mization in NFV environment. Similarly, by using Lyapunov
optimization framework, the authors propose a low complexity
online distributed algorithm. Guo et al. [11] propose provable
algorithm by combining techniques from multiplicative weight
update and primal-dual update paradigms. Nevertheless, these
works only consider the dynamics introduced by gradually
arrived service requests and ignore the dynamics of NFV
system itself. Cheng et al. [6] study the resource allocation of
NFV from stochastic perspective. They consider the dynamics
that are introduced by fluctuation of traffic rate and available
amounts of wireless resources at access nodes. They formulate
the problem as a stochastic optimization problem and propose
a distributed algorithm with two-level decomposition by ex-
ploiting the hierarchical decision structures in the problem.
However, this work considers a totally different system com-
pared to ours and the proposed method cannot be adopted to
our problem easily.

III. SYSTEM MODEL AND FORMULATION

In this section, we present the abstract system model with
formal mathematical notations and then formulate the problem
as a stochastic optimization problem. Table I summarizes the
major notations used in this paper.

A. Clouds, VMs, and VNFs

The cloud provider, like Amazon, provides many kinds of
VMs with different specifications that have different capacities
of resources, e.g., Central Processing Unit (CPU), Random
Access Memory (RAM), and storage. In this paper, without
lost generality, we only consider one type of bottleneck
resource, i.e., CPU. We assume the system is time slotted,
and the NFVP offers N types of VNFs for customers in 7T’
time slots. In general, different types of VNFs have different
resource requirements. For example, computation-consuming
VNFs like Deep Packet Inspections (DPIs) require more CPU
resource, hence, VMs with more CPU cores are supposed to
deploy DPIs, so c4.2xlarge VMs with 8 vCPUs and 15G
memory may be a proper choice for instantiating DPIs. To
sum up, different types of VMs are needed to accomplish
VNF provisioning. Therefore, for each type of VNFs, NFVPs
should purchase VMs with different specifications. In addition,



TABLE I
SUMMARY OF THE NOTATIONS USE IN THE FORMULATION

Cloud and VNF
c™”  Price of reserved VMs used to instantiate type-n VNF at ¢.

c™®  Price of on-demand VMs used to instantiate type-n VNF at ¢.
ns

c; Price of spot VMs used to instantiate type-n. VNF at ¢.
7" Duration of reserved VMs.
T° Duration of on-demand VMs.

Duration of spot VMs.
Ch Flow processing capacity of type-n VNF.
Service Requests

F The set of service requests.
b I; Initial flow rate of f, also denoted by b?p.
My The set of VNFs request f should traverse.
N, Equals 1 if the type of VNF m is n.
dy Number of type-n VNF at ¢.

Decision Variables
Number of reserved VMs bought for deploying type-n VNF at ¢.
zy°  Number of on-demand VMs bought for deploying type-n VNF at
t.
Number of spor VMs bought for deploying type-n VNF at ¢.

System

T Timespan.

different type of VNFs also have different processing capacity
in terms of bandwidth, and let C,, to represent the flow
processing capacity of type-n VNF.

Each VM instance can be purchased as reserved instance,
on-demand instance, and spot instance, this is the typical
pricing method of Amazon EC2. In general, reserved in-
stances are purchased for a longer duration with relatively
lower prices, we denote the price and duration of a reserved
instance used for deploy type-n VNF at time ¢ as ¢ and 77,
respectively. However, on-demand instances and spot instances
can be bought for a shorter duration. The prices and durations
of on-demand instances and spot instances that are used for
deploying type-n VNF at time ¢ are represented by c¢*?, c*®, 7°
and 7°, respectively. Particularly, the prices of spot instances
vary dramatically, as presented in Fig. 1. However, the prices
of reserved instances and on-demand instances tend to be
relatively steady, comparing with the prices of spot instances.
Therefore, in this paper, we handle the prices of spot instances
as stochastic variables, where the spot prices may vary over
time and future prices are not know when NFVPs make
purchase decisions.

B. Service Requests

The set of service requests is denoted by F'. The sequence
of VNFs that the flow of request f should traverse is My,
and for each VNF m € My, let n;;, indicate whether the type
of VNF m is n. In addition, for each request f € F, the
initial flow rate is represented by bf(b(}). As mentioned in
Section I, in this paper, we consider that the flow rates may
fluctuate over time. Besides the flow rates change due to traffic
fluctuation, the flow rates may also change after the flows are
processed by some VNFs. For example, Intrusion Detection
Systems (IDSs) may drop packets that violate security polices;
IPSec/SSL VPN and media gateways can increase (decrease)
packet size for encapsulation (decapsulation) [15]. We use d,,
to denote the traffic change ratio after the flow is processed by

type-n VNF. Note that we also use dm to denote the change
ratio for VNF m with little notation abuse, since we can get
the value of d,,, easily by get the type VNF m. For example,
the rate of flow of service request f after being processed by
the first VNF is calculated b} = bg - 8.

C. Decision Variables and Formulation

In each time slot ¢, the NFVP observes the revealed ex-
ogenous information, i.e., the price fluctuation and flow rate
fluctuation for every service request f. Then together with the
inventory of VM instances bought before, the NFVP needs
to decide how many VM instances should purchase for each
specification, in order to serve current flow rate or reserve
for future usage. In particular, the NFVP makes the following
decisions in each time slot ¢: (i) the number of reserved
instances to buy for each specification, denoted by x7"; (ii) the
number of on-demand instances to buy for each specification,
denoted by x}'?; (iii) the number of spot instances to buy for
each specification, denoted by x7'®. Without lost generality,
we assume the NFVP intents to minimize the overall cost for
buying VM instances over T time slots.

To sum up, the cost minimization problem can be formu-
lated as follows stochastic programming:

minE Z Z (702 + Tl + ety (D
teT neN

subject to

P+ a4+ >d,VteT,YneN 2)

SN by, <diCo VtET,¥neN 3)

fEF, meM;

bf = b 61,V f € F,Ym € My \ {0} 4)

T=7° T=7" T=7"
rP= ) w4+ Y+ Y APt WteT,VneN
T=1 T=1 T=1
(&)
xyC, ay’ xyt € Lo, Vt € T\)Vn e N (6)

Formula (1) is the total cost of buying VM instances,
which is the summation of money for purchasing VMs of
each specification using three pricing methods. Constraint (2)
ensures that the required number of VMs for each type of
VNFs are satisfied. Constraint (3) guarantees that the VNF
capacities are sufficient for processing all the flows of all
service requests. Constraint (4) denotes the flow rate changes
after the flows traverse VNFs. Since the initial flow rates
are know, therefore, we remove the O-th VNF from M,
denoting by My \ {0}. Constraint (5) calculates the inventory
of VM instances. (6) ensures that the decision variables are
nonnegative integers.

IV. THE VNF PROVISIONING ALGORITHM

One can easily obtain the history data of Amazon spot
prices from Amazon EC2 console [7]. Although the spot
prices fluctuate dramatically over time, it is possible to predict
the prices with tolerable inaccuracy, especially when machine
learning technologies have made great progress in recent years.



Algorithm 1: VINOS: VIrtual Network functiOn pro-
viSioning
input : History data of prices, flow rates and purchase
decisions; exogenous information: c¢i* and by,
output: Purchase decisions at time ¢: x}'", z}° and x}*°

1 Predict ¢* and bft/, Vi et + 1,---,t+ H,VfeF,
Vn € N using LSTM network

2 Construct deterministic problem P based on predicted
data over t to t + H

3 Solve problem P using CPLEX solver; Make
decisions according to the optimal solution of
problem P at time ¢

4 Collect price, flow rates, and decisions at time ¢ for
future usage

In particular, LSTM networks are confirmed to be very good at
predicting time series data. Similarly, we can also investigate
the possibility of predict flow rates of service requests based
on collected history data. Therefore, it is workable that the
NFVP makes decisions based on not only current state and ob-
served exogenous information, but also prediction information
obtained by leveraging advanced time series data prediction
techniques.

Along this line of thinking, in order to solve the previous
stochastic optimization problem, we can resort to rolling
horizon procedure (model predictive control) which is a well-
known approach in stochastic optimization society, especially
in operational research community. This method is a natu-
ral approximation strategy that solves the original stochastic
problem by repeatedly solve a deterministic problem over a
shorter horizon. A popular method in practice for building the
deterministic model is to forecast future exogenous informa-
tion over a H-period horizon. In particular, at time ¢, we can
solve the problem optimally over horizon from ¢ to ¢+ H, and
we implement the decisions =}, z;'" and z{'® for slot ¢. Then
we repeat the process by solving the problem over horizon
t+1tot+ H +1, and so on [16].

To sum up previous analysis, the proposed solution adopts
rolling horizon procedure which leverages LSTM networks to
predict future exogenous information and CPLEX to solve the
deterministic problems. The detail procedures are presented in
Algorithm 1. In particular, We name this algorithm as VIrtual
Network functiOn proviSioning (VINOS).

V. TRACE-DRIVEN EVALUATION

In this section, we evaluate the performance of the propose
method. We first measure the prediction accuracy of the LSTM
networks, and then we evaluate the performance of VINOS
under different settings of the timespan and the number of
service requests.

A. Simulation Settings

We conduct a trace-driven evaluation using real data. We
construct service requests based on Abilene dataset [17], which

TABLE I
MAIN PARAMETERS OF THE EXPERIMENTS.

11068 for prices & 1679 for flow rates
382

{50, 60, 70, 80, 90, 100}
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Length of training data
Length of test data
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Fig. 2. Loss of train and test datasets when training LSTM network for a
price trace.
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Fig. 3. Loss of train and test datasets when training LSTM network for a
flow rate trace.

is collected from and educational backbone network in North
America. In particular, we set service flow rates using flow
rates from this dataset. In addition, there are total 5 types
of VNFs in our simulation, and we randomly generate a
sequence of 3 VNFs for each service request. The price data
is collected from Amazon. We compare VINOS with offline
optimum calculated by CPLEX and a heuristic algorithm, and
the two methods are indicated as CPLEX and Heuristic in
the legend, respectively. In particular, the heuristic algorithm
makes greedy purchase decisions at each interval ¢ such that
the remaining VMs plus purchased VMs at ¢ exactly equals the
demand at ¢, and the algorithm chooses the cheapest pricing
scheme at each slot.
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B. Accuracy of Prediction

The neural network is composed of three layers. The first
layer is LSTM network with 200 units and the activation func-
tion is Rectified Lined Unit (RELU), the second layer is fully
connected layer composed of 100 nodes and the activation
function is also RELU, the last layer (output layer) is fully
connected layer with 5 nodes depending on the output length.
We use Mean Squared Error (MSE) as the loss function and
adopt Adaptive Moment Estimation (Adam) as the optimizer
in our training process.

We picked the last 328 pieces of the dataset as test set, and
the rest data were used as training set. In our model, we used
the latest 5 time slots historical datas to predict the next five
data, and trained the model for total 30 epochs. Finally, we
applied the model to test dataset. In the following experiment,
we take the test set as our dataset in real physical system we
performed.

We now analyze the accuracy of our predictions for prices
and flow rates. Fig. 2 and 3 show the MSE of training and
testing dataset in training process for two specific price and
flow traces over 30 epochs, respectively. We can see that with
the epochs increasing, the MSE (loss value) decreases and
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tends to be stable.

Fig. 4 and 5 show MSE for real and predicted values
of two specific price and flow traces previously mentioned,
respectively. The MSE is different from the above one, and it is
calculated by using the prediction values and ground truth. For
each moment, we predict data for future five days and calculate
MSE. The MSE is relatively small. In particular, in Fig. 4 MSE
values range from 0 to 0.000015, in Fig. 5 MSE values are
between 0 and 0.006, which illustrates the predictions have
relatively high accuracy. To sum up, our predictions of the
prices of virtual machines and the flow rates are relatively
accurate.

C. The Impact of Different Timespan

In this experiment, we consider the performances of the
three methods over different timespan. We set number of
requests to 60 and timespan from 10 to 45, then we observe
the total cost as the timespan increases. As Fig. 6 shows,
we can draw a conclusion that VINOS achieves near-optimal
solution, compared with optimum solution which is obtained
by CPLEX. In addition, VINOS shows better performance
than heuristic algorithm. On the one hand, VINOS achieves



objective of 1.2 x OPT, where OPT is the offline optimal
objective value obtained by CPLEX and performs 8.6% better
than the heuristic algorithm on average. On the other hand,
as timespan increases, the cost generated by VINOS is 20%
to 25% greater than what CPLEX obtained, and is 4.2% to
14.7% smaller than what heuristic algorithm obtained.

D. The Impact of Different Numbers of Service Requests

In the following experiment, we investigate the perfor-
mances over different numbers of service requests. We set
timespan to 20 and the number of requests from 50 to 100,
then we observe the total cost as the number of requests
increase. As is shown in Fig. 7, it is also easily to see that
VINOS achieves good performance compared with CPLEX
and outperforms the heuristic algorithm. In particular, we can
see that VINOS achieves objective of 1.2 x OPT, moreover,
VINOS performs 8.0% better than the heuristic algorithm
on average. As the number of requests increases, VINOS
accomplishes steady performance, ranging from 25.7%xOPT
to 27.2%xOPT, and achieves smaller cost than the heuristic
algorithm, ranging from 5.4% to 11.3%.

According to previous analysis, we can conclude that VI-
NOS accomplishes superior performances, this is because
VINOS takes account future exogenous information when it
makes decisions, while, the heuristic algorithm can only make
greedy decisions based on history and current information.

VI. CONCLUSIONS

In this paper, we have investigated the VNF provisioning
problem in stochastic cloud environment. We formulate this
problem as a stochastic optimization problem, and we propose
VINOS that can deal with the uncertainties introduced by the
fluctuation of cloud price and flow rate. VINOS follows the
paradigm of rolling horizontal procedure: first constructing a
deterministic problem over a short horizon with the predictions
of LSTM networks and then optimally solving this problem.
Our extensive trace-driven experimental results show that VI-
NOS achieves the near-optimal performance and outperforms
the benchmark solution.

For future work, more considerations will be explored in
terms of predicting exogenous information and leveraging
this information to design high performance algorithms. For
example, design algorithms based on distribution of exogenous
information. Moreover, it is also interesting to design more
efficient algorithm to solve the deterministic problem. In ad-
dition, we would like investigate other dynamic characteristics
ignored by existing works, such as substrate topology changes.
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